
Generalized Bethe ansatz with the general spin representations of the Sklyanin algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 1071

(http://iopscience.iop.org/0305-4470/25/5/015)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 25 (1992) 1071-1083. Printed in the UK 

Generalized Bethe ansatz with the general spin 
representations of the Sklyanin algebra 

T Bkebe 
Deparlment of Mathematics, Faculty of Science, Universily of lbkyo, Hongo 7-3-1, 
Bunkyo.ku, lbkyo 113, Japan 

Reoeived I8 Febluary 1991, in final form 16 August 1991 

AbstncL Ihe quantum inverse sfaltering methad is applied to the inhomogeneous 
Heisenberg X Y Z  model with general spins, i.e. the general spin representations of the 
Sklyanin algebra. By means of the generalized Bethe ansatz developed Ly Bkhtajan and 
Faddeev the eigenvwtors and eigenvalues of Ihc transfer matrix are found. 

1. Introduction 

The quantum-mechanical system with the Hamiltonian 

is called the Heisenberg X Y Z  model and has been studied by many physicists 
and mathematicians because of its importance in the theory of magnetism as well 
as its fundamental mathematical structure. Here I/ acts on a Hilbert state space 
H ( N )  = H,, H ,  = C2, Jz, J , ,  J ,  are real constants and the u:s are the 
local operators acting on the nth local state space of the chain H ,  as the Pauli 
matrices ua: 

U; = I,, @ .  I,__, @ ua@ I>,.,+, @ '"c3 I,, 

where 

0 -i 
0 -1 

The completely isotropic case J ,  = Jy = J ,  is called the XXX model, and the 
eigenvalues and eigenvectors of its Hamiltonian were found by Bethe (1931), who 
proposed his famous ansatz. This has also been successfully applied to the X X Z  
model (the case J,  = Jy # J , )  by Yang and Yang (1966% b, c). 

The completely anisotropic X Y Z  model requires new technical ideas and was 
solved first by Baxter (1971a, b, 1972a. b) in his remarkable but almost unaccessibly 
difficult and technical papers. Baxter made use of the generalization of the Bethe 
ansatz and the link between the XYZ model and a two-dimensional statistical model 
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1072 T Takebe 

called the eight vertex model, the transfer matrix of which contains the Hamiltonian 
of the X Y  2 model. 

The work of Baxter was given a clearer explanation by 'bkhtajan and Faddeev 
(1979) from the viewpoint of the quantum inverse scattering method (cf Faddeev 
(1980) or Kulish and Sklyanin (1982)). lkkhtajan and Wddeev, starting from the 
R-matrix 

and the L-matrix 

3 

L ( u ) = Z W J u ) n a @ o :  ( n =  1, ..., N )  (1.2) 
a d  

described the transfer matrix of the eight vertex model by means of the L-matrix and 
found the eigenvectors and eigenvalues of the transfer matrix, using a variant of the 
Bethe ansatz (the 'algebraic Bethe ansatz't; the original Bethe ansatz is called the 

The W,(u)s are determined by the Boltzmann weight of the model. As a result R 
and L ,  satisfy the following important relations: 

'CMrdinatc Rethe afiut.'; Cf S.qyanin (j%n) for other variants of fie Rethe "fZ). 

RL2(u  - v ) R ' ~ ( u ) R ' ~ ( v )  = R 2 3 ( 7 ~ ) I t 1 3 ( ~ ) R 1 2 ( u - ~ )  

R ( u -  ~ ) ( L k ( u ) L i ( u ) )  = (L: , (u )L! , (u ) )R(u  - v ) .  

(1.3) 

which is the famous Yang-Baxter relation, and 

(1.4) 

The indices of R12, L 1 ,  etc denote, as usual, the tensor components on which the 
operators act non-trivially. 

Since the solvability of the model comes from these relations, there naturally 
aiisc~s uic qucsuun UL pncrauuilrmg int: IIIUUGI uy r ~ p i a ~ c i ~ i c r i r  UI iiic L-IIMLILA. I U O  

is the motivation of the present work. The operator-valued function L , ( u )  which 
satisties (1.4) was enumerated by Sklyanin (1982) under the condition that R ( n )  is 
the Baxter's R-matrix (1.1) and that L , ( u )  has thc form 

.L̂  -..- ^C _._._^.:-._I__ . L A  _ _ _ I ^ ,  L.. _ ^ ^ * ^ ^  -..-... ^C .LA T __^._f__  -:" 

(1.5) 

He gave the algebraic relations which characterize Sg and constructed a new algebra 
generated by S:, which is called the 'Sklyanin algebra'. Sklyanin (1983) constructed 
(probably all) tinite-dimensional representations of this algebra, among which are 
those corresponding to the spin4 representations of sI(2) in a certain limit. The spin- 
$ representation of the Sklyanin algebra is Sa = o", hence the work of Tikhtajan 
and Faddeev (1979) is interpreted as the study of the homogeneous X Y Z  model 
with spin-4. 

t Speaking precisely, the algebraic Bethe ansntz lor the .YY" inodel k called the 'generalized' algebraic 
Bethe anmtz Lo distinguish it from the X X Z  model. 
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The main goal of the present paper is the generalization of the result of Thkhtajan 
and Faddeev to the inhomogeneous X Y Z  model with the higher spin in the sense of 
Sklyanin. That is to say, we shall show that we can replace U; in (0.2) by the general 
Spin 1ep:esentation matrix of S;, and all the machinery developed by Thkhtajan and 
Faddeev vmrks with little change. This result could be naturally conjectured, when 
we look a t  the important role of the algebraic structure (1.1)-(1.4) in the work of 
Thkhtajan and Wddeev. 

This paper is organized as follows: in section 2 we review the results from Bkhta- 
jan and Wddeev (1979) and Sklyanin (1982, 1983) to fix the notation and normal- 
izations. In section 3 we give the concrete form of the gauge transformation, the 
local vacuum and me actions of the elements of the modified L-matrices on the local 
vacuum, and 'do the Bethe ansatz'. In section 4 we add some comments on related 
topics and possible applications. 

We follow the notation from Mumford (1983) [or the 0 functions. Throughout 
this paper T denotes a fixed complex number with a positive imaginary part, and 7) a 
fixed complex parameter. Furthermore, we use the following abbreviations: 

= -r-1 T = -27-1 

and forall a , b = O , l ,  

o, , (z)  = .) eha(.) = Q ~ ~ ( z / T ;  r') S,,(Z) = O ~ , ( Z / T ;  T ) .  

2. Reviews of the generalized Bethe ansntz and Sklyanin algebra 

2.1. The generalized Bethe ansatL for lhe X Y Z  niodel 

In this section we briefly review an outline of the generalized Bethe ansatz that will 
be needed later. First we fix R and L ,  as in (1 .1)  and (l.2), where 

WdX) + WdX) = ~ , , ( 2 7 7 ) e a , ( ~ ) o , , ( ~  + 27)) 

WdX) - WAX) = ~ , , ( 2 v ) e , , ( ~ ) ~ o , ( x +  27)) 

W,(X) + WAX) = o, , (277P, , (x)~ , l (x  + 2 v )  

Wl(X)+ w2(x) = o1](27,)e,,(x)ol,(x+277). 

Here X is a complex parameter called the spectral pardmeter. Written out, L,, is the 
2 x 2 matrix with operator-valued elements: 

The elements of this matrix are regarded as the opcrator acting on the Hilbert space 
= &=, H,,,, H,,, = C2, trivially on a11 tensor components but on H, where 

U; act as the Pauli matrices ua: 

C7: 5 l H , @ ' ' . @ l H m - l  c",u"c?lff,,+, @ ' " @ 1 H N .  
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Then (1.3) and (1.4) are satisfied. 
The operator matrix 

iC called the monodromy malrk and the operator on f f ( N )  

t N ( A )  := trTN(A) = A(A)+ D(A) (2.3) 

is called the rransfer m a f k  (of the eight vertex model). The ultimate goal is to 
compute the eigenvalues and eigenvectors of t N .  

We introduce a family of gauge transformations with parameters s and t as 
follows: 

r /\\-mi\. + ) . -  Adn (1.- ~ ) - l ~ ~ ~ ~ ~ ~ , ~ k ~ ~ , ; ~ , ~ ~  Y m \ ~ J - u , \ n , d , r J . - ~ . . m + l \ . . r ~ , . J  

where 

Here c; is determined so that detM; is independent of n and m, hence 

e; =(s,,((s+1/2)+2(n+7~L)?/)u,~((S+2/2)+2(n+nL)q))-'. 

The previously defined ?;(A) acts on H ,  degencrately and 

yk(A)wk = 0 

where 

Note that 
vacuum. CY; and 6: act on it as follows: 

is independent of the spectral parameter A. This is called the local 

where h ( r )  = ~,,(O)~,,(z)~,,(t). Hence A;; , C!;; and 0% act on thegcfleraliflg 
veclors defined by 0;; := W ;  @ w; @ .  . ' 8  w;; as loiioWS: 
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More generally we introduce the matrices 

where 

The important relations among them are the following: 

and T, = ( 8  + 1 ) / 2  + 2kq - i. Note that these relations are derived only from the 
form of the R-matrix and not from the structure 01 the L-matrices. 

The generalized Bethe ansatz developed by Xikhtajan and Fdddeev (1979) is the 
method of finding the eigenvectors of the transfer matrix t ( A )  in the form of the 
linear combination of the vectors 

(2.12) n - M  
@ n ( A l , .  ' ' ,AM) := ~?l+ l ,? l - l (~ l )  ' . . R n + M , , , - h l ( A m ) Q N  

where M = N / 2  (N is supposed to be even). The actions of the diagonal elements 
of the modified monodromy matrix Tn,,,(A) on this vector is described as follows: 

A n , n ( A ) * n ( A i > . , , >  A M )  = I A ( A ;  A i ) . , ,  , A h , ) @ , , - i ( A i * . . .  - A M )  
M 

+ c I A ? ( A ;  A , , .  . . , A M ) Q , L - l ( A l . .  . . , A , - l ,  X,A,+,,. . . , A M )  
j = 1  

(2.13) 



M 

+ 2 q A ;  A , , .  . . , A A 4 ) Q n + , ( A , , .  . . , Aj- , ,A ,  A j + , , .  . . , A M )  
j=1 

(2.15) 
where 

M 
ZA(A; A I , . .  . > A M )  = ( h ( A ) ) N  fl a ( A k , A )  

k = 1  
(2.16) 

A1 

2 q A ;  4 3 . .  = - P n + l ( A , A j ) ( h ( A ) ) N  n 4 A b A j ) .  
k = l . k # j  

These are derived from the permutation relations (2.11) and (2.9). 
The transfer matrix t ( A )  = A,,,(A) + D,L,vL(A)  a m  on 

m 
' @ 8 ( A l , . .  . , A M )  = e2*i"@Q9,(X, , .  . . , A M )  (2.17) 

n = - N  

2 A Y - ' ( A ;  A i , .  . . ,  A M ) ) Q , L ( A i , .  . . , A j - 1 ,  A ,  A j + l , .  . . , A M ) .  

(2.18) 

+e-2*iB 

Therefore ' @ @ ( A , , .  . . , A M )  is one of the eigenvectors of t ( A )  with the eigenvalue 

e2" '@,A(X;  A,, . . . , A , )  + e-2ai8 ~ A ( A ; A l ~ . ~ ~ , A , w )  (2.19) 

provided that Aj  satisfy the Eelhe equalions 

for all j = 1 , .  . . , M .  
lhkhtajan and Faddeev (1979) investigated further the case when 27 is a point 

of finite order on the elliptic curve with the period ( 1 , ~ ) .  We do not repeat their 
results here. 
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22. Swanin algebra 

In this section we review the algebra constructed by Sklyanin (1982) and its repre- 
sentations studied by Sklyanin (1983). 

Define R(X) by (1.1) with W,(X) as in section 2. Then the necessary and 
sufficient condition for L(X) = L,,(X) with the form (1.5) to be the solution of (1.4) 
is that Sa = SE satisfies the following commutation relations (we omit the indices n 
in this section): 

(2.20) 

where ( a , o , y )  stands for any cyclic permutation of (1,2, 3), [A,  B ] ,  = A B +  BA, 
and = (W: - Wp')/( W$ - W , ) ,  Le. 

(2.21) 

The algebra Q generated by So,.  . . , S3 following the relations (2.20) is called 
the Swanin algebra (cf also Odesskii and Feigin (1989)). Sklyanin (1983) studied the 
representations of this algebra extensively. We me in this paper the' following 'spin-1' 
representations (1 is a half integer): 

pI : Q * End(V,). 

The representation space is the subspace of the space of entire functions on the 
mmplex plane defined by 
v, := 04l+ oo - - { f ( u ) l f ( v +  1) = f ( - U )  = f ( u ) , f ( v t  T )  = e-41*Qv+r) I(.)). 

(2.22) 

It is easy to see that d i m 5  = 21 + 1. 
The generators of the algebra act on this space as follows: 

where 

so(u) = @ 1 1 ( V ) @ l l ( 2 V )  

s 2 ( u )  = i @ o o ( ~ ~ ) Q o o ( 2 ~ )  

S I ( U )  = ~ I O ( 7 ) @ 1 0 ( 2 ~ )  

4 2 ) )  = ~ o l ( ~ ) ~ o l ( 2 u ) .  

These representations reduce to the usual spin-l representations of U(sI(2,C)) for 
Jap - 0 (7 + 0). In particular, in the case 1 = 4, S" are expressed by the Pauli 
matrices U" as follows: B k e  ( B o o ( ' L u ; 2 r ) - 0 1 0 ( 2 r ~ ~ ~ r ) , @ o o ( 2 u ; 2 ~ ) t  @ , , ( 2 u ; 2 r ) )  
as the basis of VI,, = @it. With respect to this hasis S" are written in the matrix 
form 

Since the relations (2.20) are homogcneous, the ovcrall constant factor in the repre- 
sentation is not essential. 
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3. Main result 

In this section we generalize the result of 'l?imkhatajan and Faddeev (1979) by means 
of the Sklyanin algebra and its representations. By the gauge transformation, which is 
essentially the same as that of Tikhtahan and Faddeev, we can construct eigenvectors 
of the transfer matrix of the inhomogeneous lattice with general spins, 

The total Hilbert space considered now is 

N 

H ( N )  = H ,  
m=1 

where the local state space H ,  is the spin-l,, representation space of the Sklyanin 
algebra V,_(= @z'm+l) ,  1, E {$, l ,$ , .  . .). 

The L-matrix acting on the mth  site is 
3 

(3.1) 

where p ,  is the spin-1 representation of the Sklyanin algebra defined in s&t;lon 2.2, 
and Sa are the generators of this algebra. Here in this section we F e  for the 

~ ~ \ i~, mnveiiienee of ;:e aiiipiitatioiis \' \ 

which is proportional to those used in section 2. 

matrix t (X )  as follows: 
We define the inhomogeneous monodromy matrix T ( X , X ( O ) )  and the transfer 

Here are the k e d  parameters. As in scction 21 the goal is to construct 
eigenvectors E WN) of t ( X ;  A(o)). 

First we introduce the gauge transformation of the L-matrix. In order to apply the 
generalized Bethe anSatz to our case, we need a fanily of the gauge transformations 

with the corresponding local vacuum w; E N,,,, such that w is independent of X and 

Y Z ( A ) W L  = 0 

and a k ( X ) w ; ,  6&(A)w; have simple forms. The dcsircd transformation is almost 
the Same as that for the spin-: case: 

L m ( A ; l m )  c Lk(A;s,L;ImJ = ~ ~ , ( X ; s , / . ; I , , ~ ) / ~ , , ~ ( X ; I , ~ ) ~ ~ - l ( X ; ~ . ~ ; I ~ ) - l  

(3.4) 
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where 

M : ( k  s , t ;  1,) = M*l"+n(A; s, 2 ) .  (3.5) 
M,(A; s , t )  is defined in section 21 after (2.9). The local vacuum w ; ( s )  is defined 
up to the constant factor: 

W ; ( S ;  U )  = R " , S ) & Z ( S ;  U )  5 0;;' (3.6) 
where 

21, 
S T  

U )  = n e (U + - + - + w,m + n ) O  - (31, + ;)q + 2 k q )  2 4  
k l  

S T  
x 8 (U - - - - - 

2 4  

and 
.21 q -- %,n-l - exp (-Ti+- (4 (; + (21" + n)q - l,q) + T I } .  

a m , n  

y:(X), a : ( X ) ,  6;(A) act on { w : ( s ) } , ~ ~  as follows: 

y ( A j W ; ( s j  ~ 6 

a:(A)w;(s)  = h," (77>A)w:;'(5) (3.7) ( I  1 

6 ; (A )wk(s )  = h ( ' " ) ( q , A ) w ~ ~ ' ( s )  

where 

(3.8) @ m ) ( q , ~ )  = +2exp ( 4 h l L m q [ * ( A + O ) - T l ]  - T 

The apparent discrepancy between (3.7) and (2.5) nimes from the difference between 
the normalizations of W,(A) and p r ( S a ) .  

The verification of (3.7) is essentially straightforward but is a terribly tedious U" 

putation using the Riemann's relations, the Landen transformations and the modular 
bansformations (cf Mumford (1983) or Whittaker and Watson (1927)). h an exam- 
ple, we sketch the strategy of the calculation of Y,';~ (X)w: (s). 

. I  

0 , , ( 2 l , V * ( A + V ) ) .  

y;(~) acts on f ( ~ )  E V, = e,$+ ( U  E C) as 

c 
( Y k ( A ) f ) ( U )  = - ( r + ( v ) j ( t ,  + 7 1 )  - r - ( v ) f ( v -  7 1 ) )  

Q , , ( 2 v )  

where C is a constant independent of v ,  and 

r+(,,) = e (U - - - - - (2/,in + 71 - L,, - : ) , , I  + A)  T S  

4 2  
x 8 ( ~ + ~ + - + ( 2 1 , , , ~ n f ~ i  T S  - f , , , - ; ) r t - A )  

2 
T S  + ( ~ i , , ~ i i t  + i i  - :;/,,, + 4)q) 

T S  
x 8 (U - - - - - (&,in + U + 1, , ,  + 4)q) 

4 2  

r - ( U )  = r+( -U) .  
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Putting f ( v )  = w;(s ;v ) ,  we can prove the first equation of (3.7). We omit the 
detail. 

Now we turn to the study of the monodromy matrix and the transfer matrix. We 
fix the parameters s, 1 and n and set 

m-1 

sm := s - A(0) m 1, := 1 + A('), n,  := n + 2 C(lk - im). (3.9) 
I.-, 

Noting that 

) = M"...(x - ~ ( 0 )  . M[;;:)-lo- S m + l r L + l ; L + l  111 my m 9 1 m ; L )  

= M,,_,+,_(~;s,t) (3.10) 

we can transform the monodromy matrix in a simple way by means of the gauge 
transformation introduced earlier: 

T , ( X ; X ( ~ ) ) H T ~ ( X ; S , l ; X ( ' ) )  

:= I",-(X - A('),; S N , t N ;  l N ) ,  .. p ( A  - A@),; s l , t l ;  11) 

= M Z : N + , ~ ( X ;  S , ~ ) T N ( X ;  X('))M,,,(X; S , t ) .  (3.11) 

D;(A)n;(s; A(')) = / L ? . . . J " ( 7 ] ,  x)n%+'(s; A(')) 

where 

N 

hyl~. . ' " ) (?7rX) = n h y q 7 , , A -  A("Jj) .  (3.13) 
k = 1  

As in section 2.1 we define more general translormations of TN by 

TN(X;X("))  ++ T, , , . (X;s , t ;  A(')) := M;'(X; .,/)7;y(X;X('))M,,(X;s,t). 

(3.14) 
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so 

T i ( X ; s , t ; X @ ) )  = T2,"+nN,n,(A; s , t ;  X q .  (3.15) 

The a"utation relations of A,,,,, B,,,,,, D,, ,,,,, ,, defined by 

are, as in section 2.1, derived from the fundamental relation 

R(X- W)(TN(Xi 1)(1 @ T N ( @ ;  A"))) 
- - 1 1  \ -  m ~ ~ ~ ~ , , .  CY ' N \ I " .  \(%UT , / \*N\,*> (1. \ ( w l a , l n / l  I w A / ' L \ A  - P /  ,.> (3.17) 

which is the direct consequence of (1.4). Since we use the same (or, exactly speaking, 
proportional) R-matrix as in section 2.1 and the commutation relations depend only 
on the form of the R-matrix, as emphasized in section 2.1, (2.11) holds in the present 
case without changes, so we do not rewrite them. 

On the basis of these data, we can follnw the method of the generalized Bethe 
ansatz Keeping in mind (3.15) and the fact 

N 
(21NN + n N )  - "1 = 21t0ta, 1tot,, := 4 (3.18) 

k = l  

... ̂  A-C.... .D I ,  wc u = u t t ~  w R ( n l , .  . . , A M )  :ji (2.12), where M = i,,,,,, p r i d e d  iiiai it,,,, is an 
integer. Eguations (2.13)-(2.16) hold, if we rcplace the factor ( h ( 2 q  + and 
( / L ( X ) ) ~  hy h~"""")(q,X) and A?' ' ' ' ' '  ' '(q, A)  rcspectively. Therefore \ye defined 
by (2.17) is one of the eigenvectors of 1( A; A(n)) with the eigenmlue 

, A ( X ; X , , . . . , X M ) + e - 2 ~ i B  ? A ( X ;  A I , .  . - > A M )  (3.19) e2sie 

if X j  satify the Bethe equations 

for all j = 1,. . . , M .  
The rest of the results from 7ltkhtajan and Fdddecv (lY7Y), concerning the case 

when 27 is a p i n t  of finite order of the elliptic curve, can also he generalized to the 
general spin inhomogeneous chain. But it is only B literal translation, so we leave it 
to the reader. 

4. Concluding remarks 

Here we make some additional remarks on related topics and possible further appli- 
cations. 
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(i) As briefly commented on hy ’Ihkhtajan and Faddeev (1979), the (low) excita- 
tion spectrum of the inhomogeneous higher spin S Y 2 model can be calculated hy 
means of the integral equation method. Reshetikhin (1990) showed recently that the 
excitation spectrum for the spin > i differs significantly from the case spin = i even 
for the XXX antiferromagnet model in that respect that it has an internal degree 
of freedom described in terms of some RSOS model. Our results could perhaps help 
to generalize Reshetikhin’s results to the X Y Z  case and to see what RSOS model 
will then appear. 

(ii) There are several results connected to the Sklyanin algebra in the theory of 
RSOS lattice. models (for example, Hasegawa and Yamada (1990), Hasegawa (1990)). 
There might be some relation between those results and our work. 

(iii) The elliptic R-matrices of higher rank are called the Belavin’s R-matrix (ef 
Vershik (1984) and Cherednik (1986)). It is expected that our strategy will work 
for these R-matrices and that the generalized Bethe ansatz will give eigenvalues and 
eigenvectors. 

(iv) As the study of the trigonometric R-matrices and the quantum inverse scat- 
tering method associated with it lead to the study of the quantum groups (cf Drinfeld 
(1986)), the study of the elliptic R-matrix and the physical systems associated with it 
will contribute to the understanding of the Sklyanin algebra (or similar algebras) and 
the representation theory. 7b this end our results together with the results quoted 
in (ii) and the functional Bethe ansatz of the X Y Z  model (cf Sklyanin (1985a, h, 
1986)) could play an important role. 
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